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Abstract.

The straightforward application of energy and linear momentum conserva-
tion to the absorption/emission of photons by atoms allows to establish the
essential features of laser cooling of two levels atoms at low laser intensities.
The lowest attainable average kinetic energy of the atoms depends on the
ratio I'/ Er between the natural linewidth and the recoil energy and tends
to Er as I'/ER tends to zero (in one dimension). This treatment, like the
quantum mechanical ones, is valid for any value of the ratio I'/ Er and con-
tains the semiclassical theory of laser cooling as the limiting case in which
Er <.

PACS 37.10.De 03.30.4+p

1 Introduction

Starting from the pioneering works of mid Seventies of last century, laser
cooling of atoms has become a vast research field with many applications in
physics, chemistry and biology.

When an atom absorbs a photon, its kinetic energy is changed according
to the laws of energy and linear momentum conservation. In general, but not
always, if an atom flying against a photon absorbs it, the kinetic energy of
the atom decreases. Instead, if a photon is chasing the atom, the variation
of the atom’s kinetic energy due to the absorption of the photon is always
positive.

The proposal of cooling atoms with laser beams has been put forward
by Héansch and Schawlow in 1975 [1]: the idea was that of illuminating the
atoms with six laser beams (two opposite beams for each spatial dimension)
red detuned with respect to an absorption line.

Apparently, there are two limits to the cooling process: the Doppler limit
and the recoil limit. The Doppler limit is due to the natural width I' = hy



(Full Width at Half Maximum) of the atomic transition used: since the
first order Doppler shift is +AFE(v/c) (where AE is the transition energy
between the two atomic levels), when AFE(v/c) ~ T', the photon may be
absorbed (with significant probability) not only by atoms flying against the
photon but also by atoms flying in the opposite direction, thus limiting the
cooling process. Instead, the recoil limit is due to the fact that when the
kinetic energy of the absorbing atom is of the same order of magnitude of its
variation due to the absorption or emission of a photon no further cooling
seems to be possible.

The theoretical treatment of laser cooling is not a simple one. In the semi-
classical approach, the atom is considered as a localized two—levels quantum
system and the light field is treated classically [2]. According to this theory,
the lowest attainable average kinetic energy < Ex > of the atoms is given
by I'/4. This result can not be valid in all conditions since it implies that <
Ex >— 0as ' — 0. This physically unsound result is due to the assumption
that the photon momentum is negligible with respect to the atomic one. This
approximation implies that the kinetic energy of the atom is much larger than
the recoil energy Er. As we shall see, the semiclassical theory is applicable
only when I' > FEj.

A quantum mechanical treatment of the motion of a two levels atom under
laser light, applicable for any value of the ratio between the natural linewidth
and the recoil energy, has been developed, among others, by Winelnd and
Itano [3] and by Castin, Wallis and Dalibard [4].

The discovery by Lett et al. that temperatures well below the Doppler
limit can be achieved [5] inspired a re-formulation of the theoretical descrip-
tion: it was found that the multilevel nature of the atoms and the spatial
variation of the light field polarization can be exploited for attaining tem-
peratures close to the recoil limit [6].

Temperatures below the recoil limit can be achieved by sophisticated
procedures like the Velocity Selective Coherent Population Trapping [7] and
the Stimulated Raman Cooling [8]. The book by Metcalf and van der Straten
may be taken as a guide for exploring all these issues and the vast available
literature [9].

Stimulated by these developments, the search for ever lower temperatures
has attracted the attention of experimental and theoretical physicists. This
notwithstanding, the theoretical reconsideration of laser cooling of two levels
atoms maintains its importance, since it sheds light on essential features of
the cooling process.



This paper is based on the idea that the application of conservation laws
to the absorption/emission of photons by atoms should yield the essential
features of laser cooling of two levels atoms at low laser intensities.

The conceptual framework of the following treatment is simple and the
mathematics needed is limited to some algebraic manipulations. Therefore,
this paper might be of some interest for university and high school teaching or
for in service training of high school teachers. It might also be of some value
for researchers: being based on conservation principles, it sets down limiting
conditions that should be met also by more sophisticated (and complicated)
treatments like the quantum mechanical ones.

The first treatment of the absorption/emission of photons by atoms based
on energy and linear momentum conservations is due to Schrédinger’ [10].
Schrodinger’s paper has been ignored by his contemporaries and even nowa-
days it is not so popular: see, for instance, [11, 12, 13]. Reasonably, this
oblivion has been due to the deep rooting of the wave description of light
in the background physical knowledge, in spite of the fact that the absorp-
tion/emission of light by atoms is a discrete process. Schrodinger’s treatment
is a relativistic one. We shall maintain this approach, notwithstanding the
fact that the atoms’ velocities of interest in the final steps of the laser cool-
ing process are much smaller than the light speed. This choice is motivated
by several reasons. Firstly because Schrodinger’s relativistic treatment can
be applied to a variety of phenomena ranging from the emission of electro-
magnetic radiation by atoms/nuclei in inertial flight at relativistic velocities
[12] to the emission/absorption of photons without recoil (Mdssbauer effect)
on rotating devices [13]; more fittingly to the subject of the present paper,
because it could be applied to laser cooling of ions at relativistic speeds in
storage rings, a research field initiated by Schroder et al. in 1990 [14]. Sec-
ondly, because by using directly the approximation of newtonian mechanics
the atom’s rest energy, which appears in the expression of the recoil energy,
remains conceptually obscure. In A it is shown how to obtain the basic
approximated formulas by applying directly the newtonian mechanics: the
teacher’s choice will depend on the students’ level, on epistemological con-
siderations and on personal preferences. Instead, in B the exact relativistic
formulas are applied to ions in storage rings.



2 QOutline of the paper

An outline of the main steps of the paper will help in understanding how
the various calculations contribute to the overall description. We shall deal
only with energies: the transition energy AFE);, the recoil energy Er =
AFE3,/2Mc?, the natural linewidth I' = %y and the energy E,, of the ab-
sorbed/emitted photon. The transition energy AF), is the one correspond-
ing to the most probable value given by the Lorentzian shape of the natural
line.

In section 3, we shall assemble the basic formulas, giving them the most
suitable form for the laser cooling process. Two dimensionless parameters
are introduced:

Er AFEy
Br = = 1
"7 AEy, 2Me (1)
and r
Bp = —— 2
N (2)

Their ratio Bp/Br is equal to I'/Eg. A third dimensionless parameter will
enter the description: the parameter B; = v;/c, where v; is the norm of
the atom’s velocity vector ¢ before the absorption/emission of a photon.
The use of dimensionless parameters simplify the calculations and allows an
easy comparison of the orders of magnitude involved. In order to accustom
himself to the use of these parameters, the reader should keep in mind that
Br is a measure of the recoil energy, I' of the natural linewidth in units of the
transition energy AFE); and B; of the atom’s velocity in units of ¢. Of course,
when needed, the basic physical quantities will be re—established or shown
along with the dimensionless parameters. The following table contains the
data relative to typical atomic transitions used in laser cooling.

In section 4, the implications of a non zero linewidth are discussed. In
particular, it is shown that when an atom absorbs a counter—propagating
photon its transition energy is AE“, while when the atom absorbs a co—
propagating photon of the same energy its transition energy is AEY =
AEA(l — By)/(1+ By).

In section 5, the basic formulas are approximated in the limit of small
atoms’ velocities: in this limit, only the first order Doppler effect is taken
into account and the relativistic dynamics can be replaced by the Newtonian
one. In order to identify this limit without ambiguity, we must take into
account that the formulas contain terms of the first or higher order in the



‘He | 388.98 | 4.27x1071 1.93 x 107° 4.52 4.56 x 1076
Li | 670.96 | 1.41 x 10719 1.32 x 1078 93.62 3.44 x 1076
ZNa | 589.16 | 4.91 x 101 1.97 x 108 401.22 1.90 x 106
133Cs | 852.35 | 5.87 x 10712 1.47 x 1078 2504 791 x 1077

Table 1: Typical values of the dimensionless parameters used in this paper.
The parameter B; has been calculated by putting By = v,.,s/c at 300 K. For
reasons that will be clear later, the data have been arranged for increasing
values of the ratio Bp/Br =T'/Exg.

B’s (Bi1, Br, Bp): the linear approximation is valid insofar as only terms
linear in the B’s can be safely retained. We shall distinguish between photon
absorptions that decrease the atom’s kinetic energy and photon absorptions
that increase it; we shall also find that, on the average, the spontaneous
emission of a photon increases the atom’s kinetic energy by an amount equal
to the recoil energy Ex (in the linear approximation). The balance between
these competing processes (cooling and heating) characterizes the steady
state condition in laser cooling.

In section 6, the formulas of section 5 are applied to laser cooling, in the
limit of low laser intensity, i.e. in the limit in which the stimulated emission is
negligible. It is assumed that the laser photons are red detuned. The average
variation of the kinetic energy < AFE > of an atom, due to the absorption of
a laser photon and the subsequent emission of a fluorescence one, is calculated
by taking into account the different probability that the absorbed photon
belongs to one of the two counter—propagating laser beams. The condition
< AFEg >= 0 yields a unique value of the atom’s velocity parameter B
which depends on the detuning parameter ¢*, that will be defined below.
This value of By can be minimized as a function of the detuning parameter 6*,
thus obtaining the lowest value By,,;,. The absorbed laser photons decrease
the kinetic energy of the atoms with velocity parameter larger than B; (or
Bimin) and increase the kinetic energy of the atoms with velocity parameter
smaller than By (Bimn). By identifying ¢By with v, (0r ¢Bimin With Upps),
we calculate the average kinetic energy < Ex >= (1/2)Mc*B? in a steady
state condition, or the lowest attainable average kinetic energy < Fx >,n=
(1/2)Mc*B?

Imin-



In A, the absorption of a counter—propagation photon by an atom is
dealt within Newtonian mechanics in order to highlights the basic conceptual
differences with the relativistic treatment, in spite of the fact that the two
approximated calculations yields the same equations. Finally, in B, it is
shown how the exact relativistic formulas can be used for describing the
laser cooling of ions in storage rings.

3 Basic formulas

In [10] Schrodinger’s has dealt only with the emission of photons and, in
particular, he never introduced explicitly the energy difference AE between
the two levels of the atomic transition. Therefore, in the following, the
original treatment by Schrodinger is extended to the absorption case (as in
[12, 13]) and the form of the equations is adapted to the problem under
study. Schrodinger’s approach, besides the conservations laws and special
relativity, assumes that the absorption/emission process is instantaneous:
more physically, that the duration of the absorption/emission process is much
smaller than the lifetimes of the atomic energy levels.

Figure 1: Emission of a photon by the atom A in motion. The photon is
emitted along the direction A — O. The subscript 1 denotes the quantities
before the emission; the subscript 2 the quantities after the emission.

For the emission of a photon by an atom, the conservation laws are (see fig.
1):
Epp = 1E1 — 7o Fy (3)



for energy, and

E E E

" —211}1 cost, = 72—221)2 cos By + 22 (4)
c c c
E E

" C—;vl sinf); = ’}/26—22’02 sin 6, (5)

for linear momentum. £, is the energy of the emitted photon; E; and Es
are the rest energies of the atom before and after the emission; ~;, 7, are
the relativistic factors before and after the emission; v; and vy the atom’s
velocities before and after the emission; #; and 6y the angles between o; and
Ui and the direction of the emitted photon. Notice that Fy —FEy = AFE, where
AFE is the energy difference between the two levels of the atomic transition:
AFE is a relativistic invariant, since it is given by the difference of two rest
energies. After some calculations, we get:

1 (FE E
Y1 P2
where:
Vi =Y (1—ﬂcos@-) = (1 = B;cosb;); i=1,2 (7)
c

Equation (6), by taking into account that Ej¢; = Ea¢s, can be written as:

2 2 2 2
PE. DL E1. »
191 2 Espo
Notice that Fy = Mc? and By, = Mc? + AFE with AE < Mc?. From now on,
we shall use the dimensionless parameter By = AE/(2Mc?*): as we shall see,
Br is a threshold parameter and the velocity vy = ¢Br a threshold velocity.
It is easy to verify that :

B}~ E2  E?— E? AE
_ :AE<1 >:AE1 B 9
26, oM 2 toMe (1+ Br) (9)
E? — B2 AE
A% AR(1-22)~AE(1-B 10
2F, ( 2E1> ( r) (10)

AE/(2E)) differs from Br by a term of the order of B%; therefore, we shall
replace in (10) the & sign with that of the equality. Therefore, from equation
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(8), we get !:

E

p

J1 - B? 1 - B?
n=AE(1-Br)—V—— —AE(1+Br)—— 2~ (11)

1 — Bycost, 1 — Bycos b,
or, in compact form:

AFE AFE
E,,=—(1—Br)=—(1+ Br) (12)
Y1 P2
The case of absorption can be treated in the same way, starting from ade-
quately re-written conservation equations. It turns out that the energy of
the absorbed photon is given by:

J1— B2 J1 - B2
Ep=AE(l+Bp)———— =AE(1-By)————  (13)

]_—BlCOS¢91_ 1—BQCOS¢92
or by the compact equation:
AFE AFE
Epp = —(14 Br) = —(1 - Br) (14)
Y1 P2

Both equations (11) yield the energy of the emitted photon, one in terms
of the atom’s velocity parameters before the emission (By,#6;), the other in
terms of the atom’s velocity parameters after the emission (Bs, 6,). This last
equation, on the other hand, yields the energy of a photon absorbed by an
atom with initial velocity parameters (Bs, 65) (first equation of (13) in which
the subscript 1 is replaced by 2). Therefore: if an excited atom with velocity
parameters (Bi,6;) emits a photon, the same atom, after the emission and,
therefore, with velocity parameters (B, 65), can absorb a photon of the same
energy.

'From the conceptual and pedagogical point of view, it is worth noticing that the same
formula (11) can be derived in a different way. Initially, the atom is considered at rest
and, by applying the conservation laws, it is found that the energy of the emitted photon
is given by E,;, = AE (1 — Byr). When the atom is in motion with velocity v; = ¢Bq
along the positive direction of the x axis of the laboratory reference frame O, we consider
the inertial reference frame O’ comoving with the atom before emission, the axis of O’
being chosen parallel and oriented in the same way as those of the laboratory reference
frame O. Then, considering the energy—momentum four vector (Epp,p) with p = E,/c
of the photon, the transformation equation for E,; is found. Finally, combining the two
results, equation (11) is obtained. Of course, a similar calculation can be carried out for
the absorption of a photon.



The variation of the atom’s kinetic energy due to the emission of a photon
is given by:

AER" = (12By — Bz) — (mEy — By) = AE — By, (15)

When the atom is at rest before emission, AEx = AE?/2E, ~ AE?/2Mc?,
since AE < Mc*. By definition, AE?/2M¢c? is the recoil energy Ex. The
equation:
1
Er = §Mu§ (16)
defines the recoil velocity vg = AE/Mc = 2up. Similarly, the variation of
the atom’s kinetic energy due to the absorption of a photon is given by:

ABR® = (12By — By) — (B — Br) = By, — AE (17)

The recoil energy in the case of absorption is the same as that in the case of
emission (in the limit AE < Mc?).

4 The natural linewidth: implications

Each atomic transition has a natural linewidth I' defined as the Full Width
at Half Maximum of a Lorentzian function centered at the value of the transi-
tion energy AFE corresponding to the highest transition probability: we shall
denote this value as AFE);. The existence of a natural linewidth suggests
to define another dimensionless parameter: Bp = I'/AFE); Bp defines the
Doppler limit in laser cooling since BpAF); describes the first order Doppler
effect.

In laser cooling, we are particularly interested in the absorption of photons
belonging to two counter—propagating laser beams. An atom with velocity
parameter B; can absorb a counter—propagating photon if its transition en-
ergy AE4 satisfies the first of equations (13) (the superscript A stays for
‘anti-parallel’). The same atom can absorb a co—propagating photon if its
transition energy AFE” satisfies the same equation (the superscript P stays
for ‘parallel’). Then:
1+ B

AET is always smaller than AE4 for B; # 0 and equal to AE4 for B, = 0.

AEY = AEA

(18)



5 The linear approximation

In the linear approximation, the energy of the emitted photon is obtained
from equations (11) with the approximation /1 — B? ~ 1 — B#/2 and by
keeping only terms linear in the B’s (By, Bp, B):

E,, = AE(1 — Br + By cost;) = AE(1 + By + By cos ) (19)
Similarly, the energy of the absorbed photon, in the linear approximation, is
obtained from equations (13):

E,, = AE(1+ Br + Bycost;) = AE(1 — By + By cos ) (20)
In the linear approximation, the energy of the emitted /absorbed photon de-
pends only on the atom’s velocity component along the direction of propa-
gation of the emitted/absorbed photon.

5.1 Variation of the atom’s kinetic energy: absorption

As we have seen in equation (17), the variation of the kinetic energy of the
atom due to the absorption of a photon is given by:

AEg = E,, — AE (21)

Let us suppose that a photon with energy F,, is propagating along the
negative direction of the x axis. This photon can be absorbed by any atom
whose velocity component v, = —v; cos 6 satisfies the first of equations (20):
the variation of the atom’s kinetic energy is the same for all these atoms. This
means that, in the calculations, we can consider only the cases #; = 7 and
#1 = 0. Then:

AEx = AE(Br + By) (22)

where the minus sign corresponds to 6; = 7 and the plus sign to 6, = 0.
We define a red detuned photon as a photon with energy E,, = AEy(1+
Br)(1 — 6*) where AEy (1 + By) is the maximum energy of an absorbed
photon when the atom is at rest before absorption and ¢* is of the same
order of magnitude of or smaller than Bp (or By; whichever is larger): then,
E,, = AEy (14 By — 6*). Therefore, AE);6* is the difference between the
maximum energy of a photon absorbed by the atom at rest and the energy
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of the red detuned photon 2. In the linear approximation, this photon can
be absorbed in a head on collision if (first equation of (20)):

AEY = AEy (1 — 6"+ By) (23)
The variation of the atom’s kinetic energy is given by:
AEs = AEy(Br — By) (24)

If By > Brp, the absorption decreases the atom kinetic energy: in laser
cooling, this is the cooling mechanism. If By < By, the absorption increases
the atom kinetic energy; in laser cooling, this is one of the heating processes
at work. Br is a threshold parameter. The threshold velocity is:

- 2Mce 2

(25)

vr

The same atom with the same velocity parameter can absorb a co-propagating
red detuned photon of the same energy. In this case, the transition energy
of the atom must satisfy the equation:

AEY = AEy(1 -6 — By) (26)
and the variation of the atom’s kinetic energy due to the absorption is:
AE}, = AEy(Br + By) (27)

When the atom is flying in the same direction of the photon, the variation
of the kinetic energy due to the absorption of a photon is always positive. In
laser cooling, this is a second heating process.

5.2 Variation of the atom’s kinetic energy: emission

In the case of emission the energy conservation implies that:

AEg = AE — E,, (28)

%In literature, the detuning parameter ¢ is defined as § = (w; — w,), where w; and
w, are the laser and the atomic transition angular frequencies, respectively. Therefore,
5 = 10|/ AE.
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According to equation (19), the energy of the emitted photon, in the linear
approximation, is given by:

Eph = AE(l — BT + Bl COS 91) (29)

Correspondingly, the variation of the atom’s kinetic energy is:
AEK = AE(BT — Bl COS 91) (30)

We see that, also for emission, By operates as a threshold parameter.

Given an atom with a velocity parameter By, it is useful to consider the
average energy of the emitted photon under the hypothesis that any direction
of emission is equally probable. From (19) we get:

1 ™
< E,,> = AE(l—-Br)+ AEBl4—/ cos 01 (27 sin 0, db, )

™ Jo
BiAb [sin’ el}g = AE(1-Br) (31)

— AE(1- By)+

i.e.; in the linear approximation, the average energy of the emitted photon is
equal to that of the photon emitted when the emitting atom is at rest before
emission.

The average variation of the atom’s kinetic energy due to the emission of
a photon with the same probability along any direction is given by:

< AFg >=AE- < Eph >= BrAE ~ BrAFE,; = Eg (32)

i.e., the average variation of the atom’s kinetic energy due to the emission
of a photon along an arbitrary direction is positive, independent from By,
and equal to the recoil energy (in the linear approximation). This is a third
heating mechanism in laser cooling.

We shall now consider a cycle composed by the absorption of a photon
followed by a spontaneous emission along an arbitrary direction, taking into
account the complications due to the linewidth. If an atom absorbs a photon
in a head on collision, its transition energy is AE4 and the variation of its
kinetic energy is AEy (Br — By) (equation (24)). On the other hand, the
average variation of its kinetic energy due to the emission of a fluorescence
photon is simply Er. Then, the average overall variation of its kinetic energy
due to the cycle considered is given by:

< AE# >= AEy(Br — By) + Er = AEy(2Br — By) (33)

12



This variation is negative for By > 2Br, null for B; = 2By and positive for
By < 2By, where B is the velocity parameter of the atom before absorption.

Similarly, if an atom flying in the same direction of the photon absorbs
it and subsequently undergoes a spontaneous emission, the average variation
of its kinetic energy is given by (equations 27, 32):

< AE} >= AEy(2Br + B)) (34)

These two last equations contain all the information necessary for a quan-
titative treatment of laser cooling: taken together, along with the different
transition probabilities for AE4 and AE”, they describe all the cooling and
heating processes, under the conditions specified in next section.

6 Laser cooling of two levels atoms

Before proceeding, it is worth recalling what are the cooling and heating
mechanisms at work. If we assume that the laser photons are propagating
along the negative direction of the z axis, then:

e if the atom’s velocity component v, > vy = vi/2, the absorption of a
photon decreases the atom’s kinetic energy (cooling mechanism);

e if the atom’s velocity component v, < vy = vi/2, the absorption of a
photon increases the atom’s kinetic energy (heating mechanism);

e the emission of a fluorescence photon increases, on the average, the
atom’s kinetic energy by an amount equal to the recoil energy Ep
(heating mechanism).

We shall assume that: the laser photons are mono-energetic; the laser in-
tensity is low enough so that stimulated emission is negligible; only the first
fluorescence cycle is relevant (this means that the probability that a photon
emitted by an atom is absorbed by another atom is negligible).

We suppose that the sample of atoms is illuminated by two opposite laser
beams of red detuned photons for each direction axis (fig 2). For symmetry
reasons, we can deal only with the two beams propagating, say, along the x
direction.

As stated before, the energy of the red detuned photon is written as:

Epy = AEy(1+ Br)(1—6%) & AEy(1+ Br — 6%) (35)

13
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Figure 2: Schematic diagram of a 3D laser cooling setup. The atoms’ sample
(small circles) is illuminated by two opposite laser beams of red detuned
photons for each direction axis.

If an atom with velocity parameter B; absorbs a laser photon, this photon
belongs to one of the two opposite beams. If the photon belongs to the beam
flying against the atom, the transition energy AE“ satisfies equation (23)
(in the linear approximation):

AE* = AEy (1 —0%) + BIAEy (36)

The smallest possible value of AE4 is AEA = AE)(1 — §*), corresponding
to By = 0. Instead, if the photon belongs to the beam flying in the same
direction of the atom, the transition energy AE? satisfies the equation:

AEY = AEy(1—0*) — BIAEy = AE*(1 — 2B)) (37)

The maximum possible value of AE? is AET = AFEy;(1—§*), corresponding
to By = 0 and equal to the minimum value of AEA4.

The transition probabilities P4 and P? for AE# and AE” are different,
and given by the corresponding values of the normalized Lorentzian function
describing the natural line. The average variation of the kinetic energy of
the atom due to the absorption of a photon and the subsequent emission of
a fluorescence one, weighed by the relative probability, is calculated by using
the basic equations (33, 34) that we reproduce here for convenience:

< AEj >= AEy(2Br — By)P* (38)

14



for a photon flying against the atom, and
< AEY >= AEy(2Br + B,)P" (39)

for a photon flying in the same direction of the atom. Therefore, the average
variation of the kinetic energy of the atom is obtained by summing the two
equations (38, 39) member by member:

< AEg >= AEy[2Br(P* + P") = B,(P* — P")] (40)
Putting:
\ e

< AFEg > will be negative if By > Q(6*), null if B; = Q(6*) and positive if
By < Q(6%). The condition By = Q(d*) yields:

p4 4 pr
i.e.
B, = 2, UAEM(L =8 + B+ LABy(1 - 8" =By 5

LIAEy(1— 6"+ B1)] — LIAEy(1— 6" — By))

where the L is the normalized Lorentzian function describing the natural line
shape. After some manipulations we get:

By (B3, + 46*°)

2 _
Br = 4(6* — By)

(44)

with 0* > Bp. This condition means that the energy of the red detuned
photon E,, = AEy(1+ By —§*) must be smaller than AE),. Then:

1 B% + 45+
By = - BTL

2 0* — Bp (45)

The laser beams will reduce the average kinetic energy of the atoms with
velocity parameter larger than By and will increase the average kinetic energy
of the atoms with velocity parameter smaller than B;. The smallest value
Biymin of By is obtained for

. 1
) :BT+§\/4B%+B]% (46)
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and is given by:

B2
Bimin = Br |2+ 2,1+ —£ 4
1min T + + 43% ( 7)

These results are valid for any value of the ratio Bp/Br = I'/Eg. Tt is
interesting to consider three cases: Bp > Br, Bp = Br and Bp < Br.
In the first case, Bimim is obtained for 6* ~ Bp/2; in the second, for 6* =
2.12 By; in the third for ¢* ~ 2B7.

The absorption of a laser photon depends only on the atom’s velocity
component v,. Since the atoms’ sample is under the action of two counter—
propagating laser beams along the z axis, the distribution of v, is symmetric
around v, = 0: therefore, the atoms’ sample in the steady state can be
described as if all the atoms have velocity component v, = *v,,, .. When
this velocity is equal to £cBy, the average kinetic energy of the atoms can
not be reduced further. Then, by putting ¢B; = v,, ., we get:

1 1 1 B}, + 46"
< Eg>=-M<vl>=-MB} = —Egp—2—— 48
K= g S e 2= O = 16" R B (6" — Br) (48)
The lowest attainable kinetic energy will be:
1 1 B?
< Ex >min==-McB},;, = Ep |1+ |1+ -2 49
K 9 C Dimin 9 R ( + + 43% ( )

This equation implies that < Ex >,,— Er as Bp/Br — 0 (Fig. 3) 3.

When I' = 0, red detuned photons can be absorbed only by atoms flying
against the photons and the minimum condition < Fx >,..,= Egr can be
derived directly from equation (33). In fact, according to (33), the average
variation of the atom’s kinetic energy due to the absorption of a photon and
the subsequent emission of a fluorescence one is zero for By = 2By. Then,
the average kinetic energy of an atom in the steady state condition in given

by:
1 1
< Ex >= iMCQBf = §MCQ(QBT)2 = Fg (50)

In three dimensions, the minimum attainable average kinetic energy is three
times that in one dimension.

3It should be reminded that a small natural linewidth corresponds to long lifetimes of
the excited state. In these cases, the time necessary to cool the sample becomes very long:
usually, an auxiliary transition is used in the early stages of cooling.
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Figure 3: The lowest average kinetic energy goes to Er as I'/ Er goes to zero.

6.1 Comparison with the semiclassical theory

From equations (48, 49), we get, dividing member by member:

<Ex> 1 B + 46 (51)
< Ex >min  8(6* — Br)(Br + 3\/AB2 + B3)
If By = 0, this equation reduces to:
< Fx > 1 (B 20*
—rZ 2 (52)
< EK > min 2\ 26* BD

In literature, the detuning parameter ¢ is defined as 6 = w; —w, where w; and
w, are the laser and the atomic transition angular frequencies. Therefore:
d* = h|d|/AE),. Taking into account this relation and that I' = hiy (where
is the natural width expressed in terms of angular frequency), equation (52)
assumes the form:

< Erg > _1<7+2‘(5|>

] 53
<EK > min 2 2‘(5| y ( )

This is the result of the semiclassical theory of two levels atoms (at low
laser intensities): it is a limiting case of the present treatment based on
conservation laws. Furthermore, from equation (49), we get, for Bp > B

hry
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which is the lowest attainable average kinetic energy predicted by the semi-
classical theory. Finally, inserting this value in equation (53):

hy (v 20
B >— —L [ L 271
< by > 3 (2‘5’ + ; (55)

which yields the average kinetic energy of the atom according to the semi-
classical theory.

The comparison with the semiclassical theory can be visualized by three
figures. Fig. 4 shows that the two treatments are practically indistinguish-
able when Bp > Br.

B_/B_=401.22 [?°Na A=589.16 nm]

—conservation laws]
wgemiclassical

I I I I
0 1 2 4 5 6

3
8" /B =|5| /v

Figure 4: Comparison between the semiclassical theory (dotted line) and
the present treatment for the case of the 589.16 nm transition of 2 Na: the
ratio between the average kinetic energy and the recoil energy is plotted as
a function of the detuning parameter.

In the semiclassical theory, it is explicitly assumed that the photon momen-
tum is negligible with respect to the atomic one. This approximation implies
that the kinetic energy of the atom is much larger than the recoil energy.
Consequently, in the semiclassical theory both the average kinetic energy
and the lowest attainable average kinetic energy depend only on v (on Bp in
the language of this paper) equations (55) and (54). Instead, in the present
treatment, they depend on both Bp and Br (equations (48, 49)). However,
when Bp =~ By the differences between the two treatments are evident (fig.
5).

Finally, the lowest attainable kinetic energy is systematically lower in the
semiclassical theory (Fig. 6): the ratio between the value predicted by the
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. B_/B _=4.52 [“He” A=388.98 nm]
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Figure 5: Comparison between the semiclassical theory (dotted line) and
the present treatment for the case of the 388.98 nm transition of *He*: the
ratio between the average kinetic energy and the recoil energy is plotted as a
function of the detuning parameter. The * remind us that the starting level
of the transition is a metastable one.

semiclassical theory and the one obtained by conservation laws tends to one
for large values of the ratio Bp /By but drops dramatically as Bp/Br — 0.
Of course, this behavior is due to the fact that By does not enter into the
semiclassical theory:.

7 Comparison with quantum mechanical treat-
ments

Quantum mechanical treatments of laser cooling of two levels atoms at low
laser intensities have been carried out by several authors. Wineland and
Itano [3] deal with both free and bound atoms and begin with formulas
based on conservation laws applied to the absorption/emission of photons
by atoms. The difference with the present treatment lies in the fact that
Wineland and Itano’s calculation of the steady state average kinetic energy
requires the knowledge of the atoms’ velocity distribution, assumed to be
always Gaussian. For free atoms, when the linewidth is much smaller than
the recoil energy, they found that it should be possible to achieve average
kinetic energies lower than the recoil energy. However, Wineland and Itano
stress that it is difficult to obtain “the proper conditions under which these
results hold [3, p. 1525].” Instead, in the present paper, the calculation of
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Figure 6: Ratio between the lowest values of the average kinetic energy
predicted by the semiclassical theory < Ex >¢ and the conservation laws
< Ex > plotted as a function of the ratio between the natural linewidth

I' and the recoil energy Ef.

the average kinetic energy is based on the position ¢By = v,,,,, where cB;
is the atom’s velocity which zeroes the average kinetic energy variation due
to an absorption—emission cycle: no knowledge of the velocity distribution is
required. As a consequence, as shown above, when I'/Er — 0 < Ex >— FEg:
E'r is the lowest kinetic energy allowed by conservation principles in laser
cooling of two levels atoms at low laser intensities. In the second part of their
paper, Wineland and Itano show that the quantum mechanical treatment of
free atoms does not alter the picture given in the first part of their paper.

The quantum mechanical treatment by Castin, Wallis and Dalibard [4]
does not make any assumption on the atoms’ velocity distribution and is
valid for any value of the ratio between the natural linewidth and the recoil
energy. As in the present paper, they show that the semiclassical theory is
valid as long as the natural linewidth is much larger than the recoil energy;
however, differently from the present paper, they found that, for very narrow
transition lines, the lowest attainable average kinetic energy is about 0.5Fg
instead of Eg. It is not clear to me why a quantum mechanical treatment
yields this limit value which seems to be incompatible with the conservation
laws.
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8 Conclusions

The straightforward application of energy and linear momentum conserva-
tion to the absorption/emission of photons by atoms allows to find out the
essential features of laser cooling of two levels atoms at low laser intensities.
The lowest attainable average kinetic energy of the atoms depends on the
ratio I'/ Er between the natural linewidth and the recoil energy and tends
to Er as I'/ER tends to zero (in one dimension). This treatment, like the
quantum mechanical ones, is valid for any value of the ratio between the nat-
ural linewidth and the recoil energy and contains the results of the standard
semiclassical theory of laser cooling as the limiting case in which the recoil
energy is negligible with respect to the natural linewidth.

A Absorption of a photon in Newtonian me-
chanics

Suppose that an atom, flying in the positive direction of the x axis, absorbs
a counter—propagating photon with energy E,,. The conservation of linear
momentum reads:

E
Muv, — i L Mwvy (56)
c

where v; and vy are the component of the atom velocity along the x axis,
before and after the absorption, respectively. Notice how the light speed c,
extraneous to classical mechanics, enters this equation through the photon
linear momentum. The conservation of energy reads:

1 1
GMvi + By = 5 Mui + AE (57)

where AF is the energy difference between the two levels of the atomic
transition. From (56):

E
Vo = V1 — M—pﬁ (58)
Substituting this value in (57), we get:
1
Ey = AFE + mEih — B1E,, (59)
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where By = vy /c. If we write:

By = AE(1 +a) (60)
equation (59) becomes:
AE )
AE(1+a)=AF + mAE(l +a)® — BIAE(1 + «) (61)
¢

Putting By = AE/2Mc* and retaining only terms of the first degree in
a, By, By (linear approximation) we obtain:

o = BT - Bl (62)

Therefore:
E,, = AE(1+ Br — By) (63)

which is identical to the first of equations (20) in the case of #; = 7. From
(57) and (63), the variation of the atom’s kinetic energy is obtained:

AEg = E,, — AE = AE(By — By) (64)

If Bl = 0, Eph = AE(l + BT) and AEK = AE2/2MC2 = ER. ER is the
recoil energy.

The rest energy of special relativity Mc? appears in these equations as a
consequence of having considered the absorption of a photon. Of course, in
classical mechanics, the physical meaning of Mc? remains obscure.

The energy of an emitted can be derived in a similar way, by writing
down the adequately re-written conservation equations.

B Ions in storage rings

As recalled in the Introduction, ions at relativistic speeds in storage rings
can be ‘cooled’; i.e. their kinetic energy decreased, by absorption of laser
photons. Here, we shall develop a calculation just to show how the ‘basic
formulas’ of section 3 can be applied to this relativistic case.

If an ion with velocity parameter B; = wv;/c absorbs a photon of a
counter—propagating laser beam in a head-on collision, the energy of the
absorbed photon is given by (equation (13) with #; = 7):

1-5B

= AEA1 + Bk ~ kiAEA 65
) (1+ Br)ky 1 (65)

E% = AE*(1+ Br)
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if ky = L—rgi < 1 is of the order of unity (as we shall see) and Br of the

order of 1071, On the other hand, we have:

Eg® =k AEY = B (66)

where E;;}f” is the energy of the laser photon. The variation of the ion’s

kinetic energy due to the absorption of a photon is given by (equation 17):

1 —ky
ka1

AER = Ej — AEY = —AB(1 — ky) = — B> (67)

After the absorption, the atom’s velocity parameter By obeys the equation
(see equation 13):

(1+ Br) Lrgi:(l—BT) ng (68)
which yields:
_ Bi—2Br+ BB}  Bi—2Br (69)
" 1-2BBr+ B2 ~ 1-2BBy
or:
vy A _ BT VR (70)

T V1VR/

where vp is the recoil velocity. Let us now consider an inertial frame O’
comoving with the atom before absorption, the axis of O’ being chosen par-
allel and oriented in the same way as those of the laboratory reference frame
O: O’ is in motion with respect to O with the atom’s velocity v; = Bjc
along the positive direction of the common z = 2 axis: the laser beam is
propagating along the negative direction of the x = 2/ axis. In O', after
the absorption, the ion is in motion with velocity v}, = —vg. Then, since,
Vg = Vg, equation (70) is the relativistic transformation for the x component
of the velocity, as it must be. Equation (70) is an approximated one. This
approximation reflects the fact that the value of vg for the recoil velocity
is derived by writing Fr = (1/2)Mv%, i.e. by applying classical mechanics:
rigorously, Er = Mc*(ygr — 1), where yp = 1/4/1 — v} /2.

The excited ion will emit a fluorescence photon with the same probability
in any direction. The average energy of the emitted photon can be calcu-
lated as shown in section 5.2: but now, we have to use the exact relativistic
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formulas. Then:

- 27 sin 6
< B — AEA(L— Bp)/1- B2 / a9
ph 7) 247 Jo 1= Bycost

= AEY1 - Bp)Y (71)

where

Y = 7\/1_33[111(1 + By) —In(1 — By)] (72)

2B,

is, as we shall see, of the order of unity. Therefore:

B> = AEg- < ER>=AB'— AEY1-Br)Y ~
1-Y

~ AEN1-Y)=EW - (73)
1
And, finally: ey
AB — < AEJ" >= —Flyer————— (74)

ka1
In order to evaluate the orders of magnitude involved, we shall use the data
of [14], reported in table 2.

ion | Mppansition (M) | By = vy /¢ | Br = Eg/AEy | MNaser (n)
it 548.5 6.4 x 1072 1.73 x 10719 H84.8

Table 2: Data from [14]. The transition used is 351 (F = 2) — *Py(F = 1).
Aaser 18 the wavelength of a counter—propagating dye laser beam.

In terms of photon energy, A\ ansition corresponds to 2.26 eV and A\ e, to 2.12
eV. Therefore, the laser photons are greatly red detuned: as a matter of fact,
the detuning parameter §* is 6.19 x 1072, i.e. several orders of magnitude
larger than those considered in laser cooling of an atomic gas, where * is of
the order of Bp, i.e. of 107® (see table 1). Then, k; = 0.9379 and Y = 0.9993.
It follows that AR = —1.40 x 1072 eV, and < AEY >=1.58 x 1072 eV
and the difference AE%®*— < AE¢™ >= —1.387 x 107! eV. Therefore, in a
cycle constituted by the absorption of a photon followed by the emission of
a fluorescence one, the kinetic energy of an ion decreases, on the average, by
an amount of 1.387 x 10~! eV and ten thousand cycles will decrease the ion
kinetic energy by 1.387 keV. Since the lifetime of the ? P, state is 43 ns, it is
understandable how a long enough interaction time of the stored ions with
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the laser beam can produce a decrease of the ions kinetic energy of several
keV [14, p. 2901].

It is worth noticing that AEA = El* /ky = 2.26eV = Eljensition Ip
other words, AE, = AEy(1+ Br) = AE);, where AE); is the maximum
transition energy described by the Lorentzian shape of the natural linewidth.
As a matter of fact in [14, p. 2902], the ions velocity has been chosen in order
to excite exactly the transition at A = 548.4 nm (table 2). This point well
illustrates the role played by the conservation laws: the photon is greatly red
detuned, but the missing energy for the transition AFE,; — Efo‘}f” is supplied
by the atom’s kinetic energy which, consequently, diminishes by the same
amount.
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