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Abstract – The definition of the induced emf as the integral over a closed loop of the Lorentz force
acting on a unit positive charge leads immediately to a general law for electromagnetic induction
phenomena. The general law is applied to three significant cases: moving bar, Faraday’s and
Corbino’s disc. This last application illustrates the contribution of the drift velocity of the charges
to the induced emf : the magneto-resistance effect is obtained without using microscopic models
of electrical conduction. Maxwell wrote down “general equations of electromotive intensity” that,
integrated over a closed loop, yield the general law for electromagnetic induction, if the velocity
appearing in them is correctly interpreted. The flux of the magnetic field through an arbitrary
surface that have the circuit as contour is not the cause of the induced emf . The flux rule must be
considered as a calculation shortcut for predicting the value of the induced emf when the circuit
is filiform. Finally, the general law of electromagnetic induction yields the induced emf in both
reference frames of a system composed by a magnet and a circuit in relative uniform motion, as
required by special relativity.
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Introduction. – Electromagnetic induction pheno-
mena are generally described by the “flux rule”, usually
referred to as the Faraday-Neumann law1:

E =− d
dt

∫
S

�B · n̂ dS (1)

(E induced emf ; �B magnetic field; S any surface that
has the closed loop of the electrical circuit as contour).
However, it is sometimes acknowledged that the flux rule
presents some problems when part of the electrical circuit
is moving. Some authors speak of exceptions to the flux
rule [2]; others save the flux rule by ad hoc choices of
the integration path over which the induced emf is calcu-
lated [3]. The validity of the flux rule has been advocated
also in recent papers [4,5]: in both cases the flux rule is
assumed to be valid and the authors manage to show how
it works in several critical situations. Finally, it is to be
stressed that, in the literature, the possible contribution
to the induced emf of the drift velocity of the charges is
completely ignored. As shown in this paper, this is correct

(a)E-mail: giuliani@fisicavolta.unipv.it
1It is worth stressing that the theory of electromagnetic induction

developed by Faraday in his Experimental Researches is a field
theory, while the flux rule is not (see below). Faraday states that
there is induced current when there is relative motion between
conductor and “lines of magnetic force” conceived as real physical
entities [1].

only when the electrical circuit is filiform (or equivalent
to a filiform circuit; see below the case of a bar moving
in a magnetic field): when part of the circuit is made of
extended conductor, the drift velocity yields a contribution
(see, below, the treatments of Corbino and Faraday disc).
The approach taken in the present paper is radically

different and based on the definition of the induced emf
given in eq. (3): it leads immediately to a “general law”
for electromagnetic induction phenomena that is applied,
for illustration, to three significant cases (moving bar,
Faraday and Corbino disc). Then, it is shown that the
flux rule is neither a field law nor a causal law: it
must be considered as a calculation shortcut when the
electrical circuit is filiform (or equivalent to). Finally, it
is recalled that Maxwell wrote down “general equations
of electromotive intensity” that, integrated over a closed
loop, yield the “general law” for electromagnetic induction
derived in this paper, if the velocity appearing in Maxwell
equations is correctly interpreted.
The matter has basic conceptual relevance, not confined

to physics teaching; it has also historical and epistemolog-
ical aspects that deserve to be discussed2.

2The treatment of induction phenomena expounded in this paper
has been firstly presented in a communication to the XXXIX
Congress of the AIF (Associazione per l’Insegnamento della Fisica
—Association for the Teaching of Physics) [6]; then, in a lecture
during an in service training of high-school teachers [7]; it appears
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The “law” of electromagnetic induction. – Let us
begin with the acknowledgement that the expression of
Lorentz force

�F = q( �E+�v× �B) (2)

not only gives meaning to the fields solutions of Maxwell
equations when applied to point charges, but yields new
predictions.
The velocity appearing in the expression of Lorentz force

is the velocity of the charge: from now on, we shall use the
symbol �vc for distinguishing the charge velocity from the
velocity �vl of the circuit element that contains the charge.
Let us consider the integral of ( �E+�vc× �B) over a closed

loop

E =
∮
l

( �E+�vc× �B) · �dl. (3)

This integral yields, numerically, the work done by the
electromagnetic field on a unit positive point charge along
the closed path considered. It presents itself as the natural
definition of the electromotive force, within the Maxwell-
Lorentz theory: emf = E .
Since

�E =−gradϕ− ∂
�A

∂t
(4)

(ϕ scalar potential; �A vector potential) we get immediately
from eq. (3)

E =−
∮
l

∂ �A

∂t
·�dl+

∮
l

(�vc× �B) ·�dl. (5)

This is the “general law” for electromagnetic induction: its
two terms represent, respectively, the contribution to the
induced emf of the time variation of the vector potential
and the effect of the magnetic field on moving charges. If
we write �vc = �vl+�vd, where �vl is the velocity of the circuit
element and �vd the drift velocity of the charges

3, eq. (5)
becomes

E =−
∮
l

∂ �A

∂t
·�dl+

∮
l

(�vl× �B) ·�dl+
∮
l

(�vd× �B) ·�dl. (6)

Equation (6) shows that the drift velocity gives, in general,
a contribution to the induced emf : if the circuit is filiform,
the drift velocity contribution is null since �vd is parallel
to �dl (and, therefore, (�vd× �B) ·�dl= 0); however, when
a part of the circuit is made by an extended material,
the contribution of the drift velocity must be taken into
account (see below for discussion of particular cases).

also in an Italian textbook [8] and, sketchily, in [9]. All these reports
are in Italian. It may be worthwhile to present this treatment in an
international Magazine.
3We can use here the Galilean composition of velocities because

vl� c and vd� c.

Equation (6) can be written in terms of the magnetic
field4:

E =
[
− d
dt

∫
S

�B · n̂ dS−
∮
l

(�vl× �B) · �dl
]

+

{∮
l

(�vl× �B) · �dl+
∮
l

(�vd× �B) · �dl
}
. (7)

We have grouped under square and curly brackets the
terms arising from the first and second term of equa-
tion (5), respectively. This grouping is fundamental for
the physical interpretation of eq. (7). The interpretation
reads

1) When the magnetic field does not depend on time,
the sum of the two terms under square brackets is
null, because is null the first term of eq. (5) from
which they derive. In this case, the only source of
the induced emf is the motion of the charges in the
magnetic field.

2) If one overlooks this fundamental physical point and,
consequently, reads eq. (7) as

E =− d
dt

∫
S

�B · n̂ dS

in the case of a filiform circuit (for which the contri-
bution of the drift velocity is null), one gets again
the flux rule. This illustrates why the flux rule is
predictive in these cases, notwithstanding the basic
fact that it completely obscures the physical origin of
the induced emf .

The flux rule: neither a field law nor a causal
law. – The flux rule is not a field law. As a matter of
fact, it connects what is happening at the instant t on a
surface that have the circuit (closed integration path) as
contour to what is happening, at the same instant, in the
circuit: this implies an action at a distance with infinite
velocity. It is not a causal law, because it connects what
is happening in the circuit to what is happening on an
arbitrary surface that has the circuit as a contour.
Furthermore, we have seen that the flux rule, also when

correctly predictive, obscures the physical origin of the
induced emf . For these reasons, the flux rule must be
considered only as a calculation shortcut.

Moving bars and rotating discs. – As significant
cases of application of the general law we shall consider
the “moving bar” (fig. 1) and the “Faraday disc” (fig. 2).
In the case of the moving bar, the general law (6) says
that an emf equal to vBa is induced. This result comes
out from the second integral containing the velocity �vl

4This transformation uses the relation �B =∇× �A, the Stokes
theorem and takes into account the fact that the circuit element
�dl moves with velocity �vl: this last condition is responsible for the

term (− ∮
l
(�vl× �B) · �dl) under square brackets. See, for instance, [5]

or [10].
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Fig. 1: The metallic bar A, a long, is sliding on a U shaped
metallic frame T at constant velocity �v in a constant and
uniform magnetic field B perpendicular to the plane of the
figure and entering the page.

Fig. 2: Faraday disc.M is a cylindrical magnet; D a conducting
disc (electrically isolated from the magnet). The external
circuit has sliding contacts on the disc in A and C.

of the circuit element; the first integral is null since the
magnetic field is constant; also the third integral is null,
since, owing to the Hall effect, the drift velocity of the
charges is always directed along the circuit element �dl.
The general law says also that the physical origin of the
induced emf is the motion of the bar in the magnetic field
and that the induced emf is localized into the bar. In spite
of widespread beliefs5, the localization of the induced emf
is a significant physical matter. The emf is localized in
that part of the circuit in which the current enters from
the point at lower potential (point M in the case of the
bar) and exits from the point at higher potential (point N
in the case of the bar). This fact allows to treat the circuit
of fig. 1 as a (quasi)steady current circuit in which the bar
acts as a battery.
Let us now recall how the flux rule deals with this case.

It predicts an emf given by vBa. In the light of the general
law (7) and of its discussion, we understand why the flux
rule predicts correctly the value of the emf : the reason lies
in the fact that two line integrals (one under square and
the other under curly brackets) cancel, algebrically, each
other. However, we have shown above that the physics
embedded in eq. (7) forbids to read equation E = vBa as
the result of

E = vBa+(−vBa+ vBa)+ 0= vBa, (8)

that leaves operative the first term coming from the flux
variation. Finally, on the basis of the flux rule, we are not

5Einstein too, in his paper on special relativity states that
“Moreover, questions as to the ‘seat’ of electrodynamic electromotive
forces (unipolar machines) now have no point” [11].

Table 1: Phenomena observed by Faraday with the disc; see
fig. 2. The reference frame is the laboratory.

What Relative motion Induced
is moving? disc-magnet current

Disc Yes Yes
Magnet Yes No
Disc and magnet No Yes

able to predict where the induced emf is localized: we can
only guess that it is localized into the bar, since the bar is
moving; but we are not able to prove it.
The case of Faraday disc is more complicated. First

of all, we have, in this case, a part of the circuit (the
disc) made of extended material: therefore, we expect a
contribution to the induced emf from the drift velocity
of the charges. We shall ignore here this contribution: we
shall deal with it below.
Faraday carried out three qualitative experiments,

summarized in table 1 [12,13]6. Applying the general
law (6) to the fixed integration path ABCA or ABCC ′A
(and ignoring the contribution from the drift velocity), we
easily find the value of the radial induced emf (along any
radius; the circuit element C ′A gives a null contribution)7:
E = (1/2)BωR2, where B is the magnetic field (supposed
uniform), R the disc radius and ω the angular velocity of
the disc; when the disc is still, the induced emf is null.
For applying the flux rule, we must choose the integration
path ABCC ′A and consider the radius CC ′ as being
in motion in order to have an increasing area given by
(1/2)(ωt)R through whom calculate the magnetic flux
(integration path chosen ad hoc). As in the case of the
moving bar, the physics embedded in eq. (7) forbids an
interpretation of the mathematical result in terms of flux
variation: again the physical origin of the induced emf is
due to the intermediacy of the magnetic component of
Lorentz force.

The “prediction” of well-known experimental
facts: Corbino’s disc. – The following discussion will
show how the charge drift velocity plays its role in the
building up of the induced emf . In 1911, Corbino studied
theoretically and experimentally the case of a conducting
disc with a hole at its center (fig. 3) [14,15]. The first
theoretical treatment of this case is due to Boltzmann
who wrote down the equations of motion of charges
in combined electric and magnetic fields [16]. Corbino,
apparently not aware of this fact, obtained the same
equations already developed by Boltzmann. However,
while Boltzmann focused on magneto-resistance effects,

6Faraday states that, when the magnet rotates, the “lines of
magnetic force” stand still; the “lines” moves with the magnet only
in translational motion.
7The first integral of equation (6) is null since the magnetic field is

constant; the velocity appearing in the second integral is the velocity
of the charges ωr due to the motion of the disc; the contribution of
the third integral is ignored (it will be taken into account below).
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Fig. 3: Corbino disc. A conducting disc of radius r2 has a
circular hole at its center of radius r1; highly conducting
electrodes cover the inner and outer circular periphery. A
battery connected to the inner and outer periphery, produces
a radial current in the disc. When a static magnetic field �B
is applied perpendicularly to the disc and entering the page, a
circular current arises in the direction shown by the arrow.

Corbino interpreted the theoretical results in terms of
radial and circular currents and studied experimentally
the magnetic effects due to the latter ones8,9.
The application of the general law of electromagnetic

induction to this case leads to the same results usually
obtained (as Boltzmann and Corbino did) by writing down
and solving the equations of motion of the charges in an
electromagnetic field (by taking into account, explicitly or
implicitly, the scattering processes).
If Iradial is the radial current, the radial current density

J(r) will be

J(r) =
Iradial

2πrs
(9)

and the radial drift velocity

v(r)drift =
Iradial

2πrsne
, (10)

where s is the thickness of the disc, n the electron
concentration and e the electron charge. According to the
general law (6), the induced emf around a circle of radius
r is given by

Ecircular =
∮ 2πr
0

(�v(r)drift× �B) ·�dl= IradialB
sne

. (11)

The circular current dI(r)circular flowing in a circular strip
of radius r and section s ·dr will be, if ρ is the resistivity:

dIcircular =
Ecircular sdr
ρ 2πr

=
µB

2π
Iradial

dr

r
(12)

and the total circular current:

Icircular =
µB

2π
Iradial ln

r2

r1
, (13)

8Corbino, following Drude [17], used a dual theory of electrical
conduction based on the assumption of two charge carriers, negative
and positive.
9As pointed out by von Klitzing, the quantum Hall effect may be

considered as an ideal (and quantized) version of the Corbino effect
corresponding to the case in which the current in the disc, with an
applied radial voltage, is only circular [18].

where µ is the electron mobility, r1 and r2 the inner
and outer radius of the disc (we have used the relation
µ= 1/ρne).
The power dissipated in the disc is

W = (I2R)radial+(I
2R)circular =

I2radialRradial(1+µ
2B2), (14)

where we have used equation (13) and the two relations:

Rradial =
ρ

2πs
ln
r2

r1
, (15)

Rcircular =
ρ2

s2
1

Rradial
. (16)

Equation (14) shows that the phenomenon may
be described as due to an increased resistance
Rradial(1+µ

2B2): this is the magneto-resistance effect.
The circular induced emf is “distributed” homogenously
along each circle. Each circular strip of section s ·dr acts
as a battery that produces current in its own resistance:
therefore, the potential difference between two points
arbitrarily chosen on a circle is zero. Hence, as it must
be, each circle is an equipotential line.

The Faraday disc: again. – The discussion of
Corbino disc helps in better understanding the physics of
the Faraday disc. Let us consider a Faraday disc in which
the circular symmetry is conserved. As shown above, the
steady condition will be characterized by the flow of a
radial and of a circular current. The mechanical power
needed to keep the disc rotating with constant angular
velocity ω is equal to the work per unit time done by the
magnetic field on the rotating radial currents. Then, it
will be given by

W =

∫ 2π
0

∫ r2
r1

(Jradial r dα s)(B dr)(ω r) =

Iradial
1

2
ωB (r22 − r21), (17)

where the symbols are the same as those used in the
previous section. The point is that the term

E = 1
2
ωB (r22 − r21) (18)

is the induced emf due only to the motion of the disc.
This emf is the source of the induced currents, radial

and circular. Therefore, the physics of the Faraday disc
with circular symmetry, may be summarized as follows:

a) the source of the induced currents is the induced emf
due to the rotation of the disc;

b) the primary product of the induced emf is a radial
current;

c) the drift velocity of the radial current produces in
turn a circular induced emf that give rise to the
circular current.
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A possible experimental test. – The fact that
the general law of electromagnetic induction explains
the physics of Corbino disc, must be considered as a
corroboration of the same general law in a domain
usually considered as foreign to electromagnetic induction
phenomena. In the following, we shall illustrates a possible
experiment for testing different predictions by the general
law and the flux rule.
Consider a copper ring covered by a superconducting

material that prevents the magnetic field (and the vector
potential) from entering the copper ring. In this situation,
if we switch a static magnetic field on, there will be no
induced emf in the copper ring according to the general
law; however, the flux rule predicts an induced emf since
the magnetic flux entering the area of the ring varies from
zero to the steady value. I believe that the experiment
outcome is easily predictable.

Maxwell and the electromagnetic induction. –
Likely, the reader will now be curious about what Maxwell
could have said about electromagnetic induction.
In the introductory and descriptive part of his Treatise

dedicated to induction phenomena, after having reviewed
Faraday’s experimental results, Maxwell says:
“The whole of these phenomena may be summed up in

one law. When the number of lines of magnetic induction
which pass through the secondary circuit in the positive
direction is altered, an electromotive force acts round
the circuit, which is measured by the rate of decrease of
the magnetic induction through the circuit” [19].
And: “Instead of speaking of the number of lines of

magnetic force, we may speak of the magnetic induction
through the circuit, or the surface-integral of magnetic
induction extended over any surface bounded by the
circuit” [20]. In formula (that Maxwell does not write)

E =− d
dt

∫
S

�B · n̂ dS. (19)

This is the “flux rule”. However, in the paragraph 598
entitled “General equations of electromotive intensity”
Maxwell, treating the case of two interacting circuits and
supposing that the “induced” circuit is moving (with
respect to the laboratory), gets the following formula for
the electromotive intensity (in modern notation)

�E = �v× �B− ∂
�A

∂t
− gradϕ. (20)

Maxwell’s comments10:
“The electromotive intensity at a point has already been

defined in Art. 68. It is also called the resultant electrical
intensity, being the force which would be experienced by
a unit of positive electricity placed at that point. We have
now obtained the most general value of this quantity in

10Maxwell writes eq. (20) in terms of its components. Therefore,
we have substituted, in the quotations, the reference to a vector when
Maxwell refers to its components.

the case of a body moving in a magnetic field due to
a variable electric system. If the body is a conductor,
the electromotive force will produce a current; if it is a
dielectric, the electromotive force will produce only electric
displacement. The electromotive intensity, or the force
on a particle, must be carefully distinguished from the
electromotive force along an arc of a curve, the latter
quantity being the line-integral of the former. See Art.
69” [21].
And: “The electromotive force [. . . ] depends on three

circumstances. The first of these is the motion of the
particle through the magnetic field. The part of the force
depending on this motion is expressed by the first term
on the right of the equation. It depends on the velocity of
the particle transverse to the lines of magnetic induction.
[. . . ] The second term in eq. (20) depends on the time-
variation of the magnetic field. This may be due either to
the time-variation of the electric current in the primary
circuit, or to motion of the primary circuit. [. . . ] The last
term is due to the variation of the function ϕ in different
parts of the field” [22].
Three comments:
i) Maxwell says that the velocity which appear in

eq. (20) is the “velocity of the particle”. The calculation
performed by Maxwell shows that the velocity we are
speaking about is the velocity of an element of the induced
(secondary) circuit11.
ii) Apart from the meaning of �v, eq. (20) leads, when

integrated over a closed circuit, to eq. (3) of our derivation
(general law of electromagnetic induction). For Maxwell
too, the “flux rule” is only a particular case of a more
general law. However, Maxwell does not comment on this
point.
iii) The fact that the flux rule, and not the general law

discovered by Maxwell (properly modified for the inter-
pretation of the velocity appearing in it), has become the
‘law’ of electromagnetic induction phenomena constitutes
a puzzling historical problem.

Einstein and the electromagnetic induction. – In
the incipit of his 1905 paper on relativity, Einstein speaks
of asymmetries presented by “Maxwells electrodynamics,
as usually understood at present”; these asymmetries
“do not seem to be inherent in the phenomena”. As an
example, Einstein quotes the “electrodynamic interaction
between a magnet and a conductor” and stresses that
the observable phenomena depend only on the relative
motion between the magnet and the circuit, whereas
the “customary view draws a sharp distinction between
the two cases, in which either the one or the other of
these bodies is in motion.”
At the end of paragraph six, in which the equations

of fields transformation are deduced and commented,

11As a matter of fact, Maxwell did not have a model for the
current, because he did not have a model for electricity. Now, we
easily write that �J = ne�v; Maxwell could not write anything similar.
See paragraphs 68, 69 and 569 of the Treatise.
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Einstein states (without carrying out any calculation) that
“the asymmetry mentioned in the introduction. . . now
disappears” [11].
We shall show that, by applying the general law (5),

any asymmetry disappears. Let us consider a rigid filiform
circuit and a magnet in relative rectilinear uniform motion
along the common x≡ x′ axis. In the reference frame of
the magnet, the emf induced in the circuit is given by
eq. (5) in which the velocity of the charge �vc is equal to

the velocity �V of the circuit along the positive direction
of the x-axis (the contribution of the drift velocity is null,
because the circuit is filiform). Since the magnetic field
generated by the magnet does not depend explicitly on
time, eq. (5) assumes the form

E = zero +
∮ [
(�V × �B)ydy+(�V × �B)zdz

]
. (21)

In the reference frame of the circuit we have instead, by
applying eq. (5) and by using the equations for coordinates
and fields transformation

E ′ =
∮
�E′ ·�dl′+ zero

= Γ

∮ [
(�V × �B)ydy+(�V × �B)zdz

]
=ΓE , (22)

where Γ= 1/
√
1−V 2/c2. Of course, for Γ≈ 1, E ′ ≈E .

The role of the magnetic component of the Lorentz force
in the reference frame of the magnet is played, in the
reference frame of the circuit, by the electric field arising
from the transformation equations; however, in both
frames we apply the same eq. (5): the description, as
required by special relativity, is the same12.

Conclusions. – The definition of the induced emf as
the integral over a closed loop of the Lorentz force acting
on a unit positive charge ( �E+�v× �B) leads immediately
to a general law for electromagnetic induction phenomena.
These are the product of two independent processes: time
variation of the vector potential and effects of magnetic
field on moving charges. The application of the general
law to Corbino’s disc yields the magneto-resistance effect
without using microscopic models of electrical conduction.
The flux of the magnetic field through an arbitrary surface
that has the circuit as contour is not the cause of the
induced emf . The flux rule must instead be considered
as a calculation shortcut for predicting the value of the
induced emf when the circuit is filiform. Maxwell wrote
down “general equations of electromotive intensity” that,

12The flux rule is incompatible with special relativity, because, as
shown above, it implies an action at a distance with infinite velocity.
Nevertheless, when Γ≈ 1 and the circuit is filiform (or equivalent
to), it can be used as a calculation shortcut in both reference
frames (magnet or circuit). However, it is a “good shortcut” only
in simple cases (for instance, the moving bar); in the more general
case discussed in this section, it is not.

integrated over a closed loop, yield the general law for
electromagnetic induction, if the velocity appearing in
them is correctly interpreted. Finally, the general law of
electromagnetic induction yields the induced emf in both
reference frames of a system composed by a magnet and a
circuit in relative uniform motion, as required by special
relativity.
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